Purkinje cell survival and axonal regeneration are age dependent: an in vitro study.

نویسندگان

  • I Dusart
  • M S Airaksinen
  • C Sotelo
چکیده

Purkinje cells are among the most resistant neurons to axotomy and the most refractory to axonal regeneration. By using organotypic cultures, we have studied age- and environment-related factors implicated in Purkinje cell survival and axonal regeneration. Most Purkinje cells taken from 1- to 5-d-old rats, the period in which these neurons are engaged in intense synaptogenesis and dendritic remodeling, die 1 week after plating, whereas if cultured before or after this period, Purkinje cells survive, even in the absence of deep nuclear neurons, their postsynaptic targets. Cerebellar slices taken from 10-d-old rats and kept in vitro for 1 week acquire a cellular composition resembling mature cerebellum. Their Purkinje cells are resistant to axotomy, but even when confronted with permissive environments (sciatic nerves or fetal cerebellar slices), their axons do not regenerate. In contrast, fetal rat and mouse Purkinje cells are able to regenerate their axons on mature cerebellar slices. This regeneration is massive, and the regrowing axons invade all cerebellar regions of the apposed mature slices, including white matter. These results show that Purkinje cell survival and axonal regeneration are age-related and independent from environmental constraints. Moreover, our observations suggest strongly that the onset of synaptogenesis of Purkinje cell axons could provide a signal to turn off their growth program and that, thereafter, permissive microenvironment alone is unable to reestablish such a program.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: an in vitro model to prevent myelination.

Axonal regeneration in the mammalian CNS is a property of immature neurons that is lost during development. Using organotypic culture of cerebellum, we have shown that in vitro Purkinje cells lose their regenerative capacity in parallel with the process of myelination. We have investigated whether myelination is involved in the age-dependent loss of regeneration of these neurons. By applying a ...

متن کامل

Age-Dependent Regeneration by Using Electromyographical Study Foliowing Sciatic Nerve Injury in Rat

Purpose: There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Axonal regeneration is relation to various factors. In this investigation we decided to evaluate the effects of nerve regeneration age-dependent on injured rat sciatic nerv. Materials and Methods: For this study, the right sciatic nerve of...

متن کامل

Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration.

In organotypic cultures, mouse Purkinje cells regenerate their axons from embryonic day 18 (E18) to postnatal day 0 (P0), die of apoptosis between P1 and P7, and survive but do not regenerate at P10. This particular behavior of Purkinje cells did not allow us to find out when the developmental switch between regeneration and lack of regeneration occurs. This work was undertaken to suppress Purk...

متن کامل

Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold

       The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 1997